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Abstract

The turbulent natural convection of air flow in a confined cavity with two differentially heated side walls is investigated numerically up
to Rayleigh number of 1012. The objective of the present work is to study the effect of the inclination angle and the amplitude of the
undulation on turbulent heat transfer. The low-Reynolds-number k–e, k–x, k–x–SST RANS models and a coarse DNS are used and
compared to the experimental benchmark data of Ampofo and Karayiannis [F. Ampofo, T.G. Karayiannis, Experimental benchmark
data for turbulent natural convection in an air filled square cavity, Int. J. Heat Mass Transfer 46 (2003) 3551–3572]. The k–x–SST model
is then used for the following test-cases as it gives the closest results to experimental data and coarse DNS for this case. The mean flow
quantities and temperature field show good agreement with coarse DNS and measurements, but there are some slight discrepancies in the
prediction of the turbulent statistics. Also, the numerical results of the heat flux at the hot wall are over predicted. The strong influence of
the undulation of the cavity and its orientation is well shown. The trend of the local heat transfer is wavy with different frequencies for
each undulation. The turbulence causes an increase in the convective heat transfer on the wavy wall surface compared to the square cav-
ity for high Rayleigh numbers. A correlation of the mean Nusselt number function of the Rayleigh number is also proposed for the range
of Rayleigh numbers of 109–1012.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Turbulent natural convection in cavities with two differ-
entially heated side walls enjoys noticeable interest from
the thermal sciences communities. The importance of this
case is due to the fact that natural convection in enclosures
can be found in many industrial or civil engineering appli-
cations such as energy transfer in rooms and buildings,
nuclear reactor cooling, solar collectors and electronic
component cooling. A significant number of experimental
and theoretical works have been carried out in the past
decades in an attempt to understand turbulent flow in
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doi:10.1016/j.ijheatmasstransfer.2006.10.015

* Corresponding author. Tel.: +00 213 4158 4323; fax: +00 213 4158
4354.

E-mail address: aounalah@univ-usto.dz (M. Aounallah).
enclosures. Comprehensive reviews of turbulent natural
convection has been documented in the literature; see e.g.
Markatos and Pericleous [2], Kuyper et al. [3], Janssen
et al. [4] and Said et al. [5]. However, predictions of turbu-
lent buoyant flows have been successful for only limited
cases due to the difficulty of the numerical simulation of
boundary layers near the walls and the uncertainly of the
general turbulence models for turbulent natural convec-
tion. The flow in turbulent natural convection in a square
cavity is characterised by a thin boundary layer along the
walls while the core is thermally stratified. The flow gradi-
ents are very large in the boundary layer and require a large
number of grid points. Previous work has shown that the
low-Reynolds approach can be adequately applied to cal-
culate turbulent natural convection in opposition with com-
putations using high Reynolds averaged Navier–Stokes
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Nomenclature

a thermal diffusivity
b amplitude of the wavy wall
g gravitational acceleration
H cavity width
k turbulent kinetic energy
Nul local Nusselt number, �(oT/ox)wH/DT

Nua average Nusselt number, 1=H
R 1

0 Nudy
P pressure
Pr Prandtl number, m/a
Ra Rayleigh number, gbDTH3/am
T temperature
T0 reference temperature, (Th + Tc)/2
t0 temperature fluctuation
Ui mean velocity components in the ith direction
u0i fluctuating velocities in the ith direction

V0 reference velocity,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gbDTH
p

xi Cartesian space coordinate (i = 1, 3)

Greek symbols

b thermal expansion coefficient
DT temperature differences, (Th�Tc)
e dissipation rate of k

l dynamic viscosity
q fluid density
rk, rx model constants
x turbulent frequency

Subscripts

c, h cold, hot wall
t turbulent

1684 M. Aounallah et al. / International Journal of Heat and Mass Transfer 50 (2007) 1683–1693
models where, the solution of the boundary layer is
assumed using the so called ‘‘universal” logarithmic profile.

Although developing advanced wall functions adapted
to natural convection has been recently attempted [6], con-
ventional literature shows that the equations must be
solved up to the wall for calculating the boundary layers
in turbulent natural convection due to the boundary layer
thickening/thinning along the walls. One of the most pop-
ular turbulence models for a correct treatment of the flow
up to the wall are the low-Reynolds-number (LRN) k–e
models. Henkes et al. [7] calculated turbulent natural con-
vection using different low-Reynolds-number k–e models in
a square cavity. Three different turbulence models were
compared: the standard k–e model with logarithmic wall
functions, the low-Reynolds-number model of Chien [8]
and the model of Jones and Launder. Comparisons of
the averaged wall-heat transfer with experiments for tall
vertical cavities show that the standard k–e model gives a
30% over prediction.

Dol and Hanjalić [9] carried out a computational study
of turbulent natural convection in a side-heated near-cubic
enclosure at a Rayleigh of 4.9 � 1010 using the RANS
approaches. Their computations were performed with both
two-dimensional and three-dimensional codes using the
low-Reynolds-number k–e model (KEM) of Chien and
advanced second-moment closures (SMC). They showed
that SMC is better in capturing thermal 3D effects and
strong streamlines curvature at the corners. Peng and
Davidson [10] investigated the performance of the low-Rey-
nolds-number k–x model on the turbulent buoyant convec-
tion flows with thermal stratification. The authors reported
a problem commonly encountered at moderate Rayleigh
numbers (Ra = 1010�1012): when applying the k–e model
to buoyancy-driven cavity flows, the model is not capable
of returning grid-independent predictions owing to the
transition regime along the vertical walls. It was found that
the buoyancy source term of the turbulence kinetic energy,
Gk, exhibits strong grid sensitivity, as this term is modelled
with the Standard gradient diffusion hypothesis (SGDH).
By introducing a damping function, the above grid depen-
dence problem is eliminated. Furthermore, the modified Gk

renders a correct asymptotic behaviour near the vertical
wall. Hsieh and Lien [11] investigated numerically the
buoyancy-driven turbulent flows in enclosures similar to
those used by Betts and Bokhari [12] and Tian and Karay-
iannis [13,14] using variants of Lien and Leschziner’s (LL)
model and the two layer approach. In the case of the tall
cavity, the performance of the LL model in terms of mean
velocity and temperature profiles are found generally fairly
well compared to the experimental data.

In addition to RANS modelling, as computing resources
are constantly growing fine techniques such as DNS, coarse
DNS and LES has attracted great attention and have been
increasingly implemented in commercial and industrial
CFD codes. Various sub-grid scale (SGS) models have
been used in LES and shown encouraging performance,
in which the study and comparison have usually been sub-
jected to the well known Rayleigh–Bénard convection, for
example: the simulation of Pallares et al. [15] on a perfectly
conducting cubic cavity. Peng and Davidson [16] studied
the turbulent buoyant flow in a cavity using LES technique
and found their simulation able to reasonably reproduce
the global mean flow and thermal field in a satisfactory
agreement with the experiment. Boudjemadi et al. [17] used
DNS to produce full budgets of Reynolds stresses and heat
fluxes for an infinitely tall cavity at Rayleigh numbers sim-
ilar to the Betts and Bokhari [12] cavity. These were soon
complemented by Versteegh and Nieuwstadt [18]. Both
papers show intricate coupling, via gravity, between
dynamic and thermal second moments. Dol et al. [19] pre-
sented some results of the computation of natural convec-
tion in the tall cavity, obtained with a fully differential and



Fig. 1. Computational domain.
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a four-equation (k � e� h2 � ehh) algebraic model. Despite
the unsatisfactory reproduction of individual terms in the
equations, computations yielded acceptable agreement
with available experimental and DNS data.

Kenjereš et al. [20] studied the natural convection in an
air-filled cubical cavity under different angles of inclina-
tions. Salat et al. [21] conducted an experimental and
numerical investigation of turbulent natural convection in
a large air-filled cavity. The numerical approximation was
achieved with three different approaches. The first is by
directly solving the unsteady three-dimensional Navier–
Stokes equations (DNS). The second is by filtering the
equation in time and modelling the Reynolds stress
(RANS). Finally, by filtering the equation in space
and modelling the sub-grid dynamic stress and heat flux
(LES). In the experiment, temperature is measured by
micro thermocouples and velocity by Laser Doppler Ane-
mometer (LDA). The authors compared both mean flow
quantities, temperature and turbulence statistics of the
numerical simulations with the experimental measure-
ments. An advanced turbulence model for buoyancy-
driven flows has been developed and validated by Liu
and Wen [22]. Kenjereš et al. [23] present a recent develop-
ment in modelling and numerical computations of natural
and mixed convection based on newly developed-non-
linear algebraic heat flux and buoyancy extended stress
models in the framework of the eddy-viscosity with the
elliptic-relaxation approach. For all the simulations, good
agreement with available experimental results and earlier
numerical simulations is obtained.

The experiment of Betts and Bokhari [12] has been
undertaken to investigate the turbulent natural convection
of air in a tall differentially heated rectangular cavity at a
low Rayleigh number. The aim of their work was to mea-
sure the mean and turbulent quantities for velocity and
temperature within the cavity. Tian and Karayiannis
[13,14] presented the thermal and the fluid flow fields and
the turbulence quantities for a low turbulent natural con-
vection in an air-filled square cavity. Temperature and
velocity distribution were symmetrically and simulta-
neously measured at different locations in the enclosure.
They found that temperature and velocity fluctuations were
limited in the boundary layers along the solid walls and did
not have a Gaussian distribution. Recently, Ampofo and
Karayiannis [1] presented an experimental benchmark data
for turbulent natural convection in an air-filled square cav-
ity usable for validation of CFD codes.

The aim of this paper is to examine different RANS mod-
els in predicting the flow in the square cavity and compare
the results with the experimental data of Ampofo and
Karayiannis [1] and the coarse DNS data. The second
objective is to use the RANS model that is more suited to
this type of flows to study the effect of turbulence on natural
convection in a cavity with a wavy wall. The present work is
a continuation of the work of Adjlout et al. [24] concerning
the influence of the inclination angle on the local and the
average Nusselt numbers across a square undulated cavity
in the laminar regime. In their study it was reported that
the mean Nusselt number decreases in comparison to the
square cavity with smooth walls. Here, the low-Reynolds-
number k–e, k–x, k–x–SST models are tested and com-
parison is made with the coarse DNS predictions and
experimental benchmark data of Ampofo and Karayiannis
[1]. The finite volume method is used to discretize the partial
differential equations. Grid independence is carried out with
the k–x–SST model for the undulated cavity when no
experimental data are available in this case. The present
study intends to focus on the influence of the inclination
angle and the amplitude of the undulation on the local Nus-
selt number for various Rayleigh numbers up to 1012. This
is of great interest in the industrial applications mentioned
above, as it will give a better understanding of the undula-
tions advantages over the smooth walls.
2. Problem position

The problem treated is statistically a two-dimensional
heat transfer in an inclined square cavity. The hot wall is
wavy with a constant temperature Th. The opposite wall
is cold with a constant temperature Tc while the horizontal
walls are insulated. Fig. 1 shows the geometry of the cavity
under consideration and the coordinates chosen. The cav-
ity is filled with air (Pr = 0.71) and the Rayleigh number
is varied up to 1012.
3. Mathematical formulation

The turbulent viscous flow inside a confined enclosure
and the temperature distribution are described by the
steady Navier–Stokes, the energy and turbulent equations.
The Boussinesq approximation is used. The governing
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equations associated with the k–x–SST [25] model are
defined as follow:
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For the SST model of Menter [25], the coefficients are
expressed in the following form:

C/ ¼ F 1C/1 þ 1� F 1ð ÞC/2 ð9Þ
where C/ stands for any constant in the two differential
equations. The blending function F1 that goes from one
near the surface to zero away from the wall is given by
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The coefficients set 1 are

rk1 ¼ 1:176; rx1 ¼ 2; b1 ¼ 0:075; b�1 ¼ 0:09;
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The eddy-viscosity for this model is
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For the low-Reynolds-number models, x at the near-wall
cell is fixed algebraically according to

xp ¼
6m

b1y2
ð18Þ

The undulation equation is expressed as follows:

f yð Þ ¼ 1� bþ b cos 2pnyð Þ½ � ð19Þ

where n and b are respectively, the number of undulations
and the amplitude.

4. Numerical procedure

The coupled conservation equation (1)–(5) are solved
numerically using FLUENT 6.1.22 code for k–x–SST
model and Saturne� in-house EDF code is used for coarse
DNS simulations. Saturne code has been successfully used
for LES simulations both with the standard Smagorinsky
model and the dynamic one (see [26, 27]). The first code
uses a segregated solver and the finite volume method to
discretize the above partial differential equations on a grid
where all the variables are collocated. The second order
upwind scheme is employed for the convection term in
the momentum and energy equations, while, the convection
term in the turbulence transport equations is discretized
using the first order upwind scheme. The pressure–velocity
coupling is ensured using the SIMPLE algorithm. The cav-
ity is filled with a non-uniform rectangular grid with a very
fine spacing near the walls, as needed for accurately resolv-
ing the steep gradients in the thin buoyancy-driven bound-
ary layer. As is shown in Fig. 2, the 2D computational
grids are staggered and clustered towards the walls. All
the variables are calculated right up to the walls without
using any wall function. On the wall surface, the boundary
values for the velocity components and the turbulent
kinetic energy are set to zero. The dimensionless tempera-
ture of the cold and the hot walls are 0 and 1 respectively.
The residuals of continuity, momentum and energy equa-
tions are required to be below 10�6 in order to reach a fully
converged solution. The relaxation parameters have been
adjusted for each simulation in order to accelerate conver-
gence. Saturne code uses a collocated unstructured finite
volume technique to discretize the Navier–Stokes equa-
tions. The algorithm is based on a SIMPLEC algorithm
for pressure–velocity coupling with a Rhie and Chow
interpolation to avoid odd–even decoupling problem.
The discretisation is second order in space thanks to a



Fig. 2. Computational grids.
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Fig. 3. Comparison of the vertical velocity (a) and the temperature (b) at
y/H = 0.5 for the square cavity (Ra = 1.58 � 109 and / = 90�).
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reconstruction technique for the gradients and second
order in time using a Crank–Nicolson scheme (with Adams
Bashforth extrapolation for the mass flow). A fully centred
scheme is used in treating the velocity convection term
while a slope test is employed for temperature to ensure
a physical solution between the imposed limits (solution
T 2 [Tc,Th]). For large eddy simulation both the standard
Smagorinsky and the dynamic model based on Germano’s
identity are available. A coarse DNS is used herein (no
sub-grid scale model is used) as the standard Smagorinsky
did not give a satisfactory solution. This is not surprising
as the flow is laminar in large parts of the domain and
the standard Smagorinsky model is not suitable for transi-
tion. In addition the grid is well refined such as the compu-
tations switch to a quasi-DNS in a large portion of the
domain.

5. Validation

Before considering the cavity with the undulated hot
wall, the square case is tested under the same conditions
of turbulence and compared to the 3D experimental bench-
mark data of Ampofo and Karayiannis [1]. These authors
have conducted an experimental study of low-level turbu-
lence natural convection in an air-filled vertical square cav-
ity of 0.75 m high � 0.75 m wide � 1.5 m deep giving a 2D
flow in the middle-plane. The hot and the cold walls were
isothermal at 50 �C and 10 �C respectively, giving a Ray-
leigh number of 1.58 � 109. The local velocity and temper-
ature were simultaneously measured at different locations
in the cavity and both mean and rms quantities were pre-
sented. In the present study, a coarse DNS simulation is
performed with Saturne code on a cubic cavity with
96 � 96 � 32 cells grid. On the other hand, the computed
turbulent buoyant flow with the low-Reynolds-number k–
e, k–x and k–x–SST models is carried out using FLUENT
code.
In regard to the case at Rayleigh number of 1.58 � 109,
the experimental results showed that the fluid pattern is
basically laminar except close to the side walls. In order
to compare experimental and numerical approaches in
the median vertical plane, the profiles of the vertical veloc-
ity (a) and the temperature (b) are respectively displayed in
Fig. 3. The buoyant velocity V0 is used as a normalisation
parameter for the velocity. Due to the symmetry of the
profiles and stagnant fluid in the core of the box, only
the closest part to the wall at mid height is presented to
show more clearly the thin thermal boundary layers. As
seen in Fig. 3, agreement between the coarse DNS and
both k–x models and the experimental data in terms of
mean velocity and temperature profiles at y/H = 0.5 is
fairly good. However, a large discrepancy between the k–
e model predictions and the measured values is observed.
The peak velocity value is particularly well captured by
all simulations except the k–e model which largely over pre-
dicts the peak of the vertical velocity. The flow stratifica-
tion is well observed in the most width of the cavity
except where it merges with the wall plume. All simulations
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seem to predict insufficient mixing between in the outer
layer as the buoyant jet entrains stagnant fluid in the cav-
ity. Compared to the experimental data, the k–x model
gives the best prediction of the velocity, while understand-
ably the coarse DNS is the closest one for the temperature
prediction. The k–x–SST model is globally satisfactory
despite some discrepancies concerning the vertical velocity
component and the turbulent kinetic energy. In the enclo-
sure core region there is very little activity: the mean tem-
perature is nearly uniform, the fluid velocity is very small
and so is the turbulence level, turbulent stresses and heat
flux. The mean temperature shows high gradients in the
wall boundary-layer with an almost uniform distribution
in the enclosure core. The predicted temperatures all show
minimum which is lower than the measured values in the
core of the enclosure. This is a trace of the cold draft
emanating from the opposite wall, which according to
measurements should have had time to completely mix
while crossing over along the floor. Again this indicates
insufficient mixing with the laminar core and perhaps too
early relaminarisation in the models. All the simulations
return a temperature of 0.5 at the centre of the cavity, as
required by symmetry, but this is not visible on the near
wall profiles (Fig. 3).

Fig. 4 displays the measured turbulence kinetic energy
on the mid-width plane and the corresponding profiles
obtained with the numerical simulations. On one hand,
the experimental profile is asymmetrically (not seen here)
distributed between the hot and the cold walls, and reaches
its maximum close to the walls. On the other hand, numer-
ical prediction of turbulence kinetic energy is symmetric.
Comparison indicates that all the numerical prediction
induces lower turbulence kinetic energy especially both k–
x models. In the core, at the middle section, the turbulent
kinetic energy falls to zero.

Fig. 5 shows the heat transfer rate along the hot wall
expressed in terms of the local Nusselt number distribution.
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The deficit of the k–e model prediction is well observed in
the first part along the wall. Qualitatively, the trend of
the predicted profiles by the coarse DNS, then both k–x
models are in satisfactory agreement with experimental
data. In general, both k–x models and the coarse DNS
over predict Nusselt number with 17.5% and 1.5% respec-
tively, on the lower half of the wall then under-predict it
but somewhat less strongly compared to the experiment.
It should be noted that the Nusselt distribution displayed
by k–x model calculation, though better than using LRN
k–e, is still somewhat unsatisfactory in particular on the
lower part. The Nusselt distributions predictions by k–x
and k–x–SST are quite similar as shown in Fig. 3. Note,
however, that the numerical simulations predict a greater
value in the region near the hot and the cold walls. The loss
may have affected the measured position of transition
onset along the active walls. The overprediction of the Nus-
selt number in the initial part of the heated wall may
related to the local minimum of temperature and residual
cold draft coring over from the opposite wall, which
induces the sharper temperature gradients seen in Fig. 3.
The k–x–SST performance is similar to the k–x and will
be retained for subsequent simulations as it has a rapid
straining production limiter which can be beneficial along
the wavy wall, Hutton et al. [28].

It is desirable to obtain an asymptotically grid-indepen-
dent solution by means of refined grid. To determine the
accuracy of the numerical solution, the grid-independent
study using k–x–SST model on grids of respectively
100 � 100, 120 � 120 and 200 � 200 cells is depicted in
Figs. 6 and 7. As it can be seen, the three profiles are prac-
tically collapsing on one curve across the cavity, when the
grids are refined. Virtually, there is no difference between
the profiles, especially for the vertical velocity and the
local Nusselt number. The only visible effect of grid refine-
ment is on the temperature profile in the thin boundary
layer which can be seen by a slight deviation. The curva-
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ture of the temperature profiles is accurately captured by
all grids at the end of the thermal boundary layer near
both walls.
6. Results and discussion of the undulated cavity

One difficulty in validating the present numerical method
and evaluating the turbulence model is that, to the authors’
knowledge, there are no available experimental data for
turbulent natural convection in undulated cavities. The
parametric study of such a configuration could be employed
for industrial needs such as the examples cited at the end
of the conclusion. Therefore, comparison of the results
obtained by low-Reynolds-number is reduced to those
predicted by different grids. The grid used in this study is
successively refined from 100 � 100, 120 � 120 to 160 �
160.

As illustrated in Fig. 8, the calculated profiles for the
vertical velocity component and temperature are in satis-
factory agreement, which ensures the grid independence
of the solution. At the mid-width, the general trend of
the presented quantities is similar to the square cavity.
However, due to the undulation, the profiles are now asym-
metric. The maximum value of the vertical velocity compo-
nent is different at the hot wall region to the cold one in the



Fig. 10. Velocity vectors for the undulated cavity: (a) mean flow in the
bottom colder corner; (b) mean flow in the top hot corner (Ra = 1.58 �
109 and / = 90�).
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boundary layer and falls to zero in the majority of the core
of the enclosure. The turbulent flow is observed to be more
accelerated near the hot wall while it is delayed near the
cold wall. No discrepancy is observed between the tested
grids for the vertical velocity component and the tempera-
ture. Fig. 9 shows the wavy trend of local Nusselt distribu-
tion on the wavy hot wall of the cavity due to the presence
of the undulations. It may also be noticed that the local
Nusselt number profile is wavy with different frequencies.
Again, no noticeable different grids tested. The turbulence
causes an increase in the convective heat transfer on wall
surfaces. Since no appreciable difference exists between
the solutions of the grids tested, the grid of 120 � 120 is
retained for all subsequent calculations.

Fig. 10 shows the velocity vectors at the bottom colder
corner and the top hot corner respectively for the configu-
ration with an inclination angle of 90� and a Rayleigh num-
ber of 1.58 � 109. The figure shows the typical patterns
observed in natural convection flows, the turbulent bound-
ary layers on the thermally active wall. The mean temper-
ature is nearly uniform in Fig. 11. The fluid velocity is
very small and so is turbulence level, turbulence stresses
and heat flux. At the angle of 90�, the gravity is parallel
to the isothermal hot and cold walls. Thus, the body force
exerted on the fluid is greater and the flow velocity
increases yielding a stronger convection flow. At the Ray-
leigh number of 1.58 � 109, the rotation disturbs the flow
at the corners and a centre-saddle combination is formed
in both; the right upper and the left lower ones with fast
counter clockwise rotating fluid as indicated in the figure.
The boundary layer is developed in both vertical walls
following the counter clockwise rotation. The distortion
of the temperature field is due to the increase in speed of
the counter clockwise rotating cell. The cold mass of fluid
accelerates along the horizontal wall when suddenly
exposed to the conditions of the vertical walls; it starts to
move in the vertical direction. The flow predictions also
reveal that the flow tends to form small secondary rolls
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Fig. 9. Comparison of the local Nusselt number at the hot wall for the
undulated cavity (Ra = 1.58 � 109 and / = 90�).

Fig. 11. Iso-temperature distributions for the undulated cavity (Ra =
1.58 � 109 and / = 90�).
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in the downstream corners of each adiabatic vertical wall.
These secondary rolls and the adjacent positions of the
boundary layers on the horizontal are characterised by
high levels of turbulence. In addition, these rolls cause a
strong variation of flow properties and local Nusselt num-
ber, i.e. conspicuous peaks of Nusselt numbers coincide
with these locations.

Fig. 12 shows the comparison of the turbulent viscosity
for both cavities. The profile of the turbulent kinetic energy
is symmetric for the square cavity contrary to the undu-
lated one. The turbulent kinetic energy reaches its maxi-
mum close to the walls and in the middle region. For the
undulated cavity, the effect of the undulation is well estab-
lished by an asymmetric profile. The turbulent kinetic
energy is more consistent near the wavy wall showing high
turbulence level in this region. Fig. 13 represents the com-
parison made between the local Nusselt number distribu-
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Fig. 12. Comparison of the turbulent viscosity at y/H = 0.5 (Ra =
1.58 � 109 and / = 90�).
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Fig. 13. Comparison of local Nusselt number results (Ra = 1.58 � 109

and / = 90�).
tions for the undulated cavity and the results of the
square enclosure for a Rayleigh number of 1.58 � 109

and an inclination angle of 90�. The wavy feature of the
geometry undulation is well established on the local Nus-
selt number. Interestingly, the undulation frequency of
the Nusselt distribution is different from the undulated wall
frequency. As can be seen from this figure, the undulation
effect increases the local Nusselt number and consequently
the mean Nusselt number. In contrary to the laminar
regime, the undulated wall causes an increase of the turbu-
lent heat transfer rate.

Comparison of the averaged Nusselt number as a func-
tion of the Rayleigh number between the undulated and the
square cavities for an angle of 90�, is presented in Fig. 14.
This comparison is made for a Rayleigh numbers up to
1012 (the grid independence has been also tested for this
Rayleigh number). The figure shows a clear influence of
the wall undulations. In comparison to the square cavity,
larger values of the Nusselt number are observed. The
dependency between these two numbers is presented in
log10�log2 diagram. In general, the mean Nusselt number
increases linearly with the increase of the Rayleigh number
for both cavities. This is accord with previous findings that
the Rayleigh–Nusselt relationship is linear up to Ra = 1012.
The present correlation can be applied to predict the heat
transfer function of Rayleigh number. Again, the influence
of the wall undulation is clearly seen in this figure by an
important increase in Nusselt number in comparison to
the square cavity. A correlation for the undulated cavity
is proposed as follow:

Nua ¼ 0:13Ra0:3 ð20Þ

Fig. 15 shows the averaged Nusselt number variation
against the inclination angle for a Rayleigh number of
1.58 � 109 in the angle range of 90–180�. Despite the fact
that the present Rayleigh number is different from the
one considered by Ozoe et al. [29], the behaviour of the
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Fig. 14. Profile of the mean Nusselt number as a function of the Rayleigh
number; results for the angle of / = 90�.



80 100 120 140 160 180
55

60

65

70

75

80

N
u a

φ°

Fig. 15. Mean Nusselt number distribution as a function of the inclination
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Fig. 17. Local Nusselt number distribution for the undulated cavity
(Ra = 1.58 � 109 and / = 90�).
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mean Rayleigh number is still qualitatively comparable. As
illustrated in the figure, the Nusselt number increases and
reaches its maximum at an angle of 100�, then decreases
to the minimum value of 54 when the inclination angles
reaches 144�. Thus, if one is using the undulated cavity
as a solar collector, it is more efficient to incline it by an an-
gle of 144� to obtain the lower heat transfer rate. Fig. 16
shows a comparison of the turbulent kinetic energy profiles
for different inclination angles. First, the turbulent kinetic
energy is more significant close to the wall for all inclina-
tion angles tested. An increase of the inclination angle from
110� to 130� suddenly increases the turbulent kinetic energy
in the core of the cavity. The distributions of local Nusselt
number for different amplitudes with three undulations and
Ra = 1.58 � 109 are shown in Fig. 17. The same trend is
observed for the tested amplitudes. There is a decrease of
the local Nusselt number on the whole hot wall with an
increase in the amplitude of the undulation.
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Fig. 16. Comparison of the turbulent kinetic energy at y/H = 0.5 for
different inclination angle for the undulated cavity (Ra = 1.58 � 109).
7. Conclusion

In the present study, the effect of the undulations on the
heat transfer is studied. The flow examined is of a natural
convection type in a turbulent regime (Ra ranging from
1.58 � 109 to 1012) with differentially heated walls. The
flow is characterised by a relatively low turbulence level
and thermal stratification. Two codes: FLUENT and
Code_Saturne are used to solve the equations of mass,
momentum, energy and turbulent quantities using constant
properties and Boussinesq approximation for density vari-
ation. Both codes are based on the finite volume technique.

In overall, the numerical tests show satisfactory agree-
ment with similar available data in the literature. The pre-
dictions of the RANS models in the square cavity with
smooth walls revealed that the low-Reynolds k–x–SST
model returns superior results in comparison with the other
RANS models. Although turbulence quantities are slightly
underestimated, this model is able to reasonably reproduce
the global mean flow and thermal field in satisfactory
agreement with the experimental data and the coarse
DNS. This gave sufficient evidence that the model is able
to mimic the physical flow features in this type of geome-
tries and was thus adopted to conduct the numerical tests
of the second case with hot undulated walls.

The present study reveals that, contrary to the flow at
laminar regime, the presence of the wavy wall increases
the local Nusselt number. Also, the results obtained for dif-
ferent inclination angles and for different Rayleigh num-
bers are affected by the undulation of the hot wall.
Indeed the latter acts on the thermal boundary layer that
is thickened or thinned along this wall. Consequently, an
undulation feature is visible on the local Nusselt number
distribution resulting in an increase of the heat transfer rate
comparing to the square cavity. The turbulence is only seen
in the thin boundary layer along the vertical walls while it is
totally absent in the core of the cavity where the stratifica-
tion is well established. A linear relationship between the
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averaged Nusselt number and Rayleigh number is also
found. The optimum angle of inclination, at which the low-
est mean Nusselt number occurs, is about 144�. Although,
the undulated walls are shown here not beneficial in solar
collector cavities, at high temperatures difference, as they
increase further the heat transfer, these types of undulated
walls may find it attractiveness in other applications such
as the optimisation of the electronic components cooling.
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